SIGMASHIELD 420

	4 pages	October 2009 Revision of January 2008
DESCRIPTION	two component reinforced high solids polyamine adduct cured epoxy coating	
PRINCIPAL CHARACTERISTICS	 coating for cargo tanks of bulk- or oil build coat for underwater- and bootto excellent abrasion and impact resistance outstanding (sea)water resistance easy to clean 	op systems
COLOURS AND GLOSS	grey, redbrown (other colours on reques	st) - gloss
BASIC DATA AT 20°C	(1 g/cm ³ = 8.25 lb/US gal; 1 m ² /l = 40.7 (data for mixed product)	ft²/US gal)
Mass density Volume solids VOC (supplied)	1.6 g/cm ³ 81 ± 2% max. 153 g/kg (Directive 1999/13/EC, S max. 239 g/l (approx. 2.0 lb/gal)	ED)
Recommended dry film thickness Theoretical spreading rate Touch dry after Overcoating interval	150 - 200 μ m depending on system 5.4 m²/l for 150 μ m, 4.1 m²/l for 200 μ m 3 hours min. 10 hours * max. 14 days *	*
Full cure after	5 days *	
	(data for components)	
Shelf life (cool and dry place)	at least 12 months * see additional data	
RECOMMENDED SUBSTRATE CONDITIONS	 previous coat; (e.g. SigmaCover 280 any contamination) or SigmaShield 220) dry and free from
AND TEMPERATURES	 substrate temperature should be at I point during application and curing 	east 5°C and at least 3°C above dew
SYSTEM SPECIFICATION	marine	system sheets: 3101, 3102, 3103, 3107
INSTRUCTIONS FOR USE	mixing ratio by volume: base to hardene	er 75 : 25
		•
Induction time	none	
Pot life	1.5 hour at 20°C * * see additional data	

DATA

SIGMASHIELD 420

October 2009

DATA

10% for 100 µm dft approx. 0.53 - 0.68	t 8 mm (= 0.02)		
is MPa (= approx.	150 Dar, 21	30 p.s.i.)			
Thinner 91-92 5 - 10%, depending on required thickness and application conditions 1.7 - 2 mm 0.3 - 0.4 MPa (= approx. 3 - 4 bar; 43 - 57 p.s.i.)					
Thinner 91-92 0 - 5%					
Thinner 90-53					
for paint and recommended thinners see safety sheets 1430, 1431 and relevant material safety data sheets					
	•				
Film thickness and spreading rate					
theoretical spread	ling rate m ² /	8.1	5.4	4.6	4.1
dft in um					
dft in µm		100	150	175	200
max. dft when brus	shing:	100	150	175	200 75 μm
	C C				
max. dft when brus	C C				
max. dft when brus Overcoating table substrate	e for Sigma	Shield 420	for dft up to	150 µm	75 μm
max. dft when brus Overcoating table substrate temperature minimum	e for Sigma 5°C	Shield 420 1 10°C	for dft up to 20°C	150 μm 30°C	75 μm 40°C
	0 - 5% for 200 µm 10% for 100 µm df approx. 0.53 - 0.68 15 MPa (= approx. Thinner 91-92 5 - 10%, depending 1.7 - 2 mm 0.3 - 0.4 MPa (= ap Thinner 91-92 0 - 5% Thinner 90-53 for paint and recon material safety dat this is a solvent bo spray mist or vapo or eyes Film thickness an theoretical spread	0 - 5% for 200 µm dft, 10% for 100 µm dft approx. 0.53 - 0.68 mm (= 0.02 15 MPa (= approx. 150 bar; 21 Thinner 91-92 5 - 10%, depending on require 1.7 - 2 mm 0.3 - 0.4 MPa (= approx. 3 - 4 k Thinner 91-92 0 - 5% Thinner 90-53 for paint and recommended this material safety data sheets this is a solvent borne paint and spray mist or vapour as well as or eyes Film thickness and spreadine theoretical spreading rate m ² /	0 - 5% for 200 µm dft, 10% for 100 µm dft approx. 0.53 - 0.68 mm (= 0.021 - 0.027 in 15 MPa (= approx. 150 bar; 2130 p.s.i.) Thinner 91-92 5 - 10%, depending on required thickness 1.7 - 2 mm 0.3 - 0.4 MPa (= approx. 3 - 4 bar; 43 - 57 Thinner 91-92 0 - 5% Thinner 90-53 for paint and recommended thinners see s material safety data sheets this is a solvent borne paint and care shou spray mist or vapour as well as contact befor or eyes Film thickness and spreading rate theoretical spreading rate m ² /l 8.1	0 - 5% for 200 µm dft, 10% for 100 µm dft approx. 0.53 - 0.68 mm (= 0.021 - 0.027 in) 15 MPa (= approx. 150 bar; 2130 p.s.i.) Thinner 91-92 5 - 10%, depending on required thickness and application 1.7 - 2 mm 0.3 - 0.4 MPa (= approx. 3 - 4 bar; 43 - 57 p.s.i.) Thinner 91-92 0 - 5% Thinner 90-53 for paint and recommended thinners see safety sheets material safety data sheets this is a solvent borne paint and care should be taken to spray mist or vapour as well as contact between the we or eyes Film thickness and spreading rate theoretical spreading rate m ² /l 8.1 5.4	0 - 5% for 200 μm dft, 10% for 100 μm dft approx. 0.53 - 0.68 mm (= 0.021 - 0.027 in) 15 MPa (= approx. 150 bar; 2130 p.s.i.) Thinner 91-92 5 - 10%, depending on required thickness and application condition 1.7 - 2 mm 0.3 - 0.4 MPa (= approx. 3 - 4 bar; 43 - 57 p.s.i.) Thinner 91-92 0 - 5% Thinner 90-53 for paint and recommended thinners see safety sheets 1430, 1431 material safety data sheets this is a solvent borne paint and care should be taken to avoid inha spray mist or vapour as well as contact between the wet paint and or eyes Film thickness and spreading rate

- surface should be dry and free from chalking and contamination

October 2009

Curing table for dft up to 150 µm

substrate temperature	dry to handle	full cure for immersion in sea water	full cure
5°C	15 hours	10 days	17 days
10°C	8 hours	7 days	14 days
20°C	3.5 hours	5 days	7 days
30°C	2 hours	4 days	5 days
40°C	1.5 hour	3 days	3 days

- for cargo hold application: for full cure for hard angular cargoes, please contact your nearest PPG Protective & Marine Coatings sales office
- adequate ventilation to remove solvent must be maintained during application and curing (please refer to sheets 1433 and 1434)
- should SigmaShield 420 or the total coating system (2 x 125 µm) be applied in excess of the specified dry film thickness, then the time necessary to reach full cure will be increased

Pot life (at application viscosity)

10°C	3 hours	
20°C	1.5 hour	
30°C	45 min.	

Worldwide availabilityWhilst it is always the aim of PPG Protective & Marine Coatings to supply
the same product on a worldwide basis, slight modification of the product is
sometimes necessary to comply with local or national rules/circumstances.
Under these circumstances an alternative product data sheet is used.

REFERENCES	Explanation to product data sheets Safety indications Safety in confined spaces and health safety	see information sheet 1411 see information sheet 1430
	Explosion hazard - toxic hazard Safe working in confined spaces Directives for ventilation practice	see information sheet 1431 see information sheet 1433 see information sheet 1434

SIGMASHIELD 420

October 2009

DATA

LIMITATION OF LIABILITY

The information in this data sheet is based upon laboratory tests we believe to be accurate and is intended for guidance only. All recommendations or suggestions relating to the use of the Sigma Coatings products made by PPG Protective & Marine Coatings, whether in technical documentation, or in response to a specific enquiry, or otherwise, are based on data which to the best of our knowledge are reliable. The products and information are designed for users having the requisite knowledge and industrial skills and it is the end-user's responsibility to determine the suitability of the product for its intended use.

PPG Protective & Marine Coatings has no control over either the quality or condition of the substrate, or the many factors affecting the use and application of the product. PPG Protective & Marine Coatings does therefore not accept any liability arising from loss, injury or damage resulting from such use or the contents of this data sheet (unless there are written agreements stating otherwise).

The data contained herein are liable to modification as a result of practical experience and continuous product development.

This data sheet replaces and annuls all previous issues and it is therefore the user's responsibility to ensure that this sheet is current prior to using the product.

The English text of this document shall prevail over any translation thereof.

	PDS	7951
190960	grey	5177052200
192367	redbrown	6179052200

